1000 TL Üzeri Kitap Alışverişlerinizde Kargo Bedava. Stoktaki Ürünler Aynı Gün Kargoya Verilir
Menü
Giriş
Şifremi Unuttum
Sepetim

Python İle Veri Madenciliği

.
Stokta Miktarı 0
%20
187,50 TL
150,00 TL
Sepete Ekle
Hemen Al
Ürün Tanıtımı

Bu kitapta Python programlama dili ile veri madenciliği uygulamaları gösterilmiştir. Python programlama dili son zamanlarda en fazla kullanılan dil olma özelliğine sahip. Özellikle Yapay Zekâ uygulamalarında Python programlama diline olan rağbet artmaktadır. Bu kitapta Python programlama diline hızlı bir giriş için de bir bölüm bulunmaktadır. Bu anlamda bu bölüm, programlama tecrübesi olmayan okuyucular için de bir rehber olarak görülebilir.
Kitapta, teorik bilgilerin anlatıldığı bölümlerin içerisinde geliştirilen kodlar da verilmiştir. Bu sayede okuyucuya gösterilen konu ile ilgili ne gibi uygulamalar yapılabileceği hakkında izlenim verilmiştir. Kitapta yer alan kodlar Python 3.8 programlama dili ve Jupyter notebook ortamında yazılmıştır. Kullanılan kütüphaneler ve kütüphane versiyonları ile ilgili bilgi, bölümler içerisinde verilmiştir.
Kitapta genel olarak üzerinde durulan kütüphaneler, NumPy, Pandas, Matplotlib ve Scikit-Learn kütüphaneleridir. Bu kütüphanelerin detaylı bir şekilde öğrenilmesi ile çoğu veri madenciliği uygulaması geliştirilebilir.
Araştırmacıların kendi kodlarını yazması, geliştirecekleri uygulamalar açısından araştırmacılara elverişli ve esnek bir yapı sunar. Bu nedenle paket programlardan ziyade kodlar ile Veri Madenciliği uygulamaları geliştirilmesi daha uygun olacaktır.
Kitapta ayrıca Makine Öğrenmesi alanındaki algoritmalardan olan regresyon analizleri, karar ağaçları, kümeleme algoritmaları ve birliktelik analizleri algoritmalarından da bahsedilmiştir. Belirtilen algoritmaların Python kodları bölümler içerisinde verilmiştir.
• Veri Madenciliğine Giriş
• Python Programlama Dili için Hızlı Bir Kurs
• NumPy ile Bilimsel Hesaplamalar
• Pandas ile Veri Seti İşlemleri
• Matplotlib ile Veri Görselleştirme
• Scikit-Learn ve Makine Öğrenmesi
• Doğrusal Regresyon Modelleri
• Lojistik Regresyon Modeli
• Karar Ağaçları ile Sınıflandırma
• K-Means Algoritması ile Kümeleme
• Birliktelik Analizleri
• Makine Öğrenmesi Uygulamaları

Özellikler

Basım Tarihi : 9 2021

Baskı Sayısı : 1

Sayfa Sayısı : 312

Ağırlık : 312 gram

En / Boy : 15 / 21

Cilt Tipi : Ciltsiz

Kağıt Tipi : 1. Hamur

Basım Yeri : Türkiye - İstanbul

Dil : Türkçe

Katkıda Bulunanlar

Editör : İrem Soylu

Benzer Ürünler
Son İncelenenler
T-Soft E-Ticaret Sistemleriyle Hazırlanmıştır.